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Abstract. We present a version of O’Neill’s Theorem (Theorem 5.2 in [6]) for piecewise linear

approximations.

1. Introduction

Theorem 5.2 of [6] asserts that if f is a continuous function from a topological polyhedron to itself,

C is a component of the set of fixed points of f , U is a Euclidean neighborhood of C containing

no other fixed points of f , r1, . . . , rk are integers whose sum is the fixed point index of C, and

x1, . . . , xk are distinct points of C, then there is a map arbitrarily close to f whose fixed points in

U are x1, . . . , xk, with the fixed point index of each xi being ri. This note establishes a version

of this result in the PL category. Specifically: (i) we allow for the polyhedron to be a subset of

a topological manifold, and not homeomorphic to an Euclidean neighborhood; (ii) we weaken the

restriction that the component C be in the interior of the polyhedron and, consequently, have to

allow for the xi’s to be arbitrarily close to it; (iii) we add the restriction that the manifold be the

space of a simplicial complex and that the approximating function be piecewise linear; (iv) in order

to obtain a regularity property for fixed points, we insist that they be interior points—barycenters,

even—of full-dimensional simplices and that the displacement map of the approximating function

be a homeomorphism locally around these fixed points, if the ri’s are ±1.

Our interest in this problem was motivated by its intended use in game theory. Nash equilibria

of games obtain as fixed points of self maps on strategy spaces. It is a frequent (and robust) feature

of games that components of equilibria lie on the boundary of the strategy space, which prompts

the weakening of O’Neill’s condition sub (ii) above. Also, fixed point problems arising from games

have a special structure, since the payoff functions of games are multilinear. Hence, perturbations

of a given fixed point map associated with a game have to satisfy certain conditions if they are to be

associated with fixed points of games, prompting us to investigate a multilinear version of O’Neill’s

theorem for games (See [2] for details.) This paper presents a linear version of the problem, where

a stronger result is possible, and is possibly of wider interest as well.
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2. Statement of The Theorem

We first set a few notational conventions and recall some definitions that will be required for the

statement of the main theorem (Theorem 2.1) and its proof.

2.1. (Notational) Conventions. For ζ > 0, define Bζ(x) to be the ball around x with radius ζ.

The symbol idX denotes the identity map on the set X. Given A ⊆ Rn and a map f : A → Rn,

df (x) ≡ x − f(x). Let X ⊂ Rn be compact, and f, g : X → Rn two continuous maps, we denote

∥f − g∥ ≡ supx∈X∥f(x)− g(x)∥p, where ∥ · ∥p denotes the ℓp-norm in Rn. Unless explicitly stated

otherwise, we will assume that p = 2 and will omit the subscript p for notational convenience. If

C ⊆ Rn, x ∈ Rn, let d(x,C) ≡ infy∈C∥x− y∥.

2.2. Triangulations, Polyhedra and Pseudomanifolds. Our terminology and notation for

polyhedral complexes is mostly standard. In particular, we follow the convention of piecewise

linear topology according to which a map from X ⊂ Rm to Rn is linear if it is the restriction to X

of a map that is affine in the sense of linear algebra, i.e., the composition of a linear transformation

and a translation.

As always, a polytope P ⊂ Rm is the convex hull of a finite set of points; an equivalent definition

is that a polytope is an intersection of finitely many closed half-spaces that happens to be bounded,

hence compact. The dimension of P is the dimension of its affine hull. The faces of P are P , the

empty face, and the intersections of P with the boundaries of closed half-spaces that contain P ;

faces other than P are proper. A (finite, bounded) polyhedral complex Z in Rm is a finite collection

of polytopes that contains each face of each of its elements, such that the intersection of any two

of its elements is a face of both. If Y is a subset of Z that contains each of the faces of each of

its elements, then Y is a subcomplex of Z. For n = 0, . . . ,m, let Zn be the set of n-dimensional

elements of Z. Elements of Z0 are vertices of Z. The dimension of Z is the largest n such that

Zn ̸= ∅. The mesh of Z is the maximum of the diameters of the elements of Z. The space of Z is

|Z| =
⋃

P∈Z P . A set P ⊂ Rm is a polyhedron if it is the space of a polyhedral complex, and its

dimension is the dimension of any such complex.

A simplicial complex S in Rm is a polyhedral complex whose elements are all simplices. We say

that S is a triangulation of |S|. The carrier ∆(x) of x ∈ |S| in S is the smallest element of S that

contains x, so it is the unique element of S whose interior contains x. If Z is a simplicial complex,

we say that Y is a subdivision of Z if Y is a simplicial complex with |Y | = |Z|, and every simplex

of Z is the union of simplices of Y .

When X is the space of a subcomplex of Z, we write Z(X) to denote the subcomplex of Z

composed by the simplices of Z which are contained in X.

If S, T are simplicial complexes, a function f : |S| → |T | is simplicial (relative to the triangula-

tions S and T ) if, for each σ ∈ S, there is a τ ∈ T such that f maps each vertex of σ to a vertex of τ

and the restriction of f to σ is linear. If P ⊂ Rm and Q ⊂ Rℓ are polyhedra, a function f : P → Q
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is piecewise linear (PL) if there are simplicial subdivisions S of P and T of Q with respect to which

f is simplicial. A sufficient condition for this (Theorem 2.14 of [7]) is that there is a simplicial

subdivision S of P such that the restriction of f to each σ ∈ S is linear.

A polyhedron of homogeneous dimension n is a polyhedron P that is the union of finitely many

n-dimensional simplices, provided that the intersection of any two of the n-dimensional simplices

is a (possibly empty) common face of both. The collection of the n-dimensional simplices together

with all their faces then constitute a triangulation of P . If T is a triangulation of P , then ∂P is

the union of those τ ∈ Tn−1 that are a face of exactly one σ ∈ Tn; evidently ∂P is a polyhedron of

homogeneous dimension n− 1.

A polyhedron P of homogeneous dimension n is an n-pseudomanifold, provided the following

hold for some triangulation T of P :

(1) Every element of Tn−1 is a face of at most two elements of Tn;

(2) For any two n-simplices σ, σ′ ∈ T there is a finite chain σ = σ1, . . . , σk = σ′ of simplices in

Tn such that σi ∩ σi+1 ∈ Tn−1.

2.3. Statement of The Result. Let (Y, ∂Y ) be a topological n-manifold with ∂Y denoting its

boundary and assume Y ⊆ Rm for some finite m > 0. Let (X, ∂X) be an n-pseudomanifold

with boundary ∂X with X ⊆ Y . Suppose Y is a polyhedron of homogenous dimension n with

triangulation T , and X is the space of a subcomplex of Y of homogenous dimension n, as well. We

can assume without loss of generality that m ⩾ n + 1, by embedding Y in a Euclidean space of

dimension larger than n, when m = n. Let S ≡ T (X). Let f : X → Y be a continuous function

satisfying the following assumptions: A) either f has no fixed points on the boundary of X in Y ,

or f(X) ⊆ X; B) the map f has a unique connected component of fixed points (cf. Remark 2.3 for

a generalization). Thanks to assumption A) about f , C has a well-defined index, call it c. Let U

be a neighborhood of C in X with closure denoted Ū .

Theorem 2.1. For every ε0 > 0, there exists δ0 > 0 such that for each 0 < δ ⩽ δ0 and each finite

collection of points x1, . . . , xk and integers r1, . . . , rk such that: (a) for each 1 ⩽ i ⩽ k, xi belongs

to the interior of an n-simplex of S, and d(xi, C) < δ, and (b)
∑

i ri = c, there exist subdivisions

S∗ and T ∗ of S and T , resp., and a simplicial map h∗ : |S∗| → |T ∗| such that:

(1) ∥f − h∗∥ < ε0;

(2) h∗(X) ⊆ X, if f(X) ⊆ X;

(3) the only fixed points of h∗ in Ū are the xi’s, and the index of each xi is ri;

(4) for each i such that ri ∈ {−1,+1 }, there exist simplices σi ∈ S∗ and τi ∈ T ∗ such that:

(a) σi ⊂ τi and xi is the barycenter of both σi and τi;

(b) h∗ maps σi homeomorphically onto τi.

Remark 2.2. The triangulation T ∗ can be chosen such that X is the space of a subcomplex of

T ∗. Also, S∗ can be chosen such that outside of a neighborhood of the xi’s, it subdivides the
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triangulation T ∗(X). Apparently, we are unable to get the stronger condition that S∗ subdivides

the triangulation induced by T ∗.

Remark 2.3. If the map f has finitely many connected components of fixed points C1, ..., Ck (for

example, if f is semialgebraic), the proof of Theorem 2.1 applies with insignificant modifications in

order to obtain a simplicial approximation g of f where the result stated in Theorem 2.1 holds for

each Ci.

Remark 2.4. When comparing Theorem 2.1 with Theoerem 5.2 in [6], our statement, ignoring

the PL structure and applying it to triangulable manifolds, provides a couple of generalizations.

First, Theorem 2.1 allows for fixed-point components to intersect the boundary of X in Y , whereas

in O’Neill, a fixed point component is located in the interior of the pseudomanifold X. Second, we

allow for a pseudomanifold X that is the subset of a topological manifold of the same dimension as

X and contained in a Euclidean space, while O’Neill requires X to be homeomorphic to a Euclidean

neighborhood. When the first case occurs, then f(X) ⊆ X, by our assumption on f , and the index

is well-defined (explicitly, by the trace formula of O’Neill).

3. Auxiliary Results

Lemma 3.1. Let τ be a n-simplex in Rm with barycenter x and let c be an integer. There exists

an n-simplex σ ⊂ τ with x as a barycenter and a PL map h : σ → τ such that x is the unique

fixed point of h and its index is c. Furthermore, if c ∈ {−1,+1 }, h can be chosen to be an affine

homeomorphism.

Proof. Consider first the case where |c| ≠ 1. We can assume without loss of generality that m = n

and x = 0. Take δ > 0 such that ℓ1-distance between 0 and ∂τ is greater than 2δ. Letting B ⊂ τ

be the ℓ1-ball of radius δ around 0, it is sufficient to construct a PL function h : B → τ such that

0 is the unique fixed point of h and its index is c. We can further reduce the problem to the case

n = 2: intersect τ (and B) with the linear subspace H of Rn consisting of points where the last

n− 2 coordinates are zero. If we have a PL function h : H ∩B → H ∩ τ where the index of 0 is c,

we can extend it to B by composing it with the projection from B to H ∩B. The point 0 still has

index c under the extension.

By the choice of δ, the problem is solved if we can find a PL function d : B → B—to serve as the

displacement of h— such that 0 is the only zero of d and has degree c. The case c = 0 is obvious:

map 0 to 0, the boundary of B to some constant on ∂B and all other points by linear interpolation.

Fix now c such that |c| > 1. The ℓ1-ball B can be triangulated as the union of four triangles (one

in each orthant). Subdivide each of the triangles into |c| triangles all of which having 0 as a vertex.

There now exists a PL map from B to itself that sends each of the 4c triangles of the subdivision

to one of the triangles of B and that has degree c.

For the case |c| = 1, the lemma requires h to be an affine homeomorphism, so we approach the

problem slightly differently. Let w0, . . . , wn be the vertices of τ . Take a simplex σ ⊂ τ of diameter
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less than δ, that has x as the barycenter, and is such that, letting v0, . . . , vn be the vertex set of σ,

there is λ > 1 for which wi = x+ λ(vi − x) for all i.

For any permutation π : {0, . . . , n} → {0, . . . , n} we can define an affine homeomorphism fπ :

σ → τ that sends vi to wπ(i). Obviously x is the only fixed point of fπ. By virtue of the assumptions

on σ, there is a retraction r : τ → σ that sends wi to vi for each i, and that is affine on each face

of τ . For a permutation π, x is also an isolated fixed point under fπ ◦ r and its index is the same

under fπ and fπ ◦ r.
Suppose π is a cyclic permutation where the only cycle involves all n + 1 elements. Then the

index of x under fπ is +1 as under fπ ◦ r it is the unique fixed point. To obtain a fixed point of

index −1, consider a permutation π that leaves, say, 0 fixed, and is cyclic on the others. Under the

map fπ ◦ r, there are three fixed points, w0, x, and the barycenter of the face opposite w0. The

index of the first and the last fixed points is +1, assigning x an index of −1. □

Lemma 3.2. Let T̂ be a triangulation of Y . Let {xi}ki=1 be a subset of Y , with each xi contained

in the interior of a simplex τi ∈ T̂n. For each δ > 0, there exists a triangulation T̃ of Y that

subdivides T̂ and satisfies the following:

(1) The mesh of T̃ is less than δ;

(2) For each i = 1, ..., k, there exist n-simplices σi ∈ T̃ and τi ∈ T̂ with σi ⊂ τi, xi the barycenter

of σi.

Proof. For each i = 1, ..., k, consider an n-simplex σi ⊂ int(τi) with diameter less than δ that has xi

as a barycenter. For each i, take a polyhedral subdivision Pi of τi that has σi as an n-dimensional

polyhedron, without introducing new vertices in τi beyond those of σi and τi. There exists a

triangulation T̂ ′
i of τi which subdivides Pi, without introducing new vertices (cf. Proposition 2.9

in [7]). The simplices of the triangulation T̂ ′
i , for each i, together with the other simplices of the

triangulation T̂ , form a triangulation T̂ ′ of Y . Now iterating sufficiently many times the barycentric

subdivision of T̂ ′ modulo ∪iσi, (cf. [11]), we obtain a triangulation T̃ that subdivides T̂ ′ and has

mesh less than δ as well. The triangulation T̃ satisfies both requirements of the lemma. □

Lemma 3.3. Let T̂ be a triangulation of Y and let σ ∈ T̂n. Let Ŝ be any triangulation of σ.

There exists a triangulation T̃ of Y that subdivides T̂ such that T̃ (σ) = Ŝ and the simplices of T̂

that are disjoint from σ are simplices of T̃ .

Proof. Let Ŝ be the collection of simplices in Ŝ that are contained in maximal proper faces of

σ. Let T̂ be the collection of simplices in T̂ that intersect σ but are not contained in σ. Let

T̂0 = { τ ∈ T̂ | τ ∩ σ = ∅, τ ⊂ ϱ ∈ T̂ }. Let f ∈ Ŝ and assume ϱ ∈ T̂ contains f . The convex closure

of f with any simplex in T0 ∩ ϱ is a simplex. Taking the convex closure of simplices in ϱ∩ Ŝ and in

T̂0 ∩ ϱ produces a triangulation of ϱ, which adds no vertices to the faces ϱ that are not contained

in σ. The simplices of Ŝ, the simplices obtained by the triangulation just defined in the simplices
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of T̂ and simplices of the triangulation T̂ which do not intersect σ, define the triangulation T̃ of

the statement. □

We say the triangulation T̃ from Lemma 3.3 extends the triangulation Ŝ from σ to Y .

Definition 3.4. A fiber bundle (with fiber F) is a triple (E,B, F, p) where:

(1) p : E → B is a continuous surjective map from the total space E to the base space B ;

(2) For each x ∈ B, there exists a neighborhood U ⊆ B of x such that hx : p−1(U) → U × F

is a homeomoprhism that satisfies p = p1 ◦ hx, where p1 is the projection over the first

coordinate.

Two fiber bundles (Ē, B̄, F̄ , p̄) and (E,B, F, p) are isomorphic if there exist homeomorphisms

h̄ : Ē → E and h : B̄ → B such that h ◦ p̄ = p ◦ h̄. The fiber bundle (E,B, F, p) is trivial if

E = B × F and p is the projection over the first coordinate. For notational convenience, we will

say that a fiber bundle is trivial if it is isomorphic to a trivial bundle.

Definition 3.5. A n-microbundle over the base space B is a triple (E,B, e, p) where e : B → E

and p : E → B are continuous maps such that:

(1) p ◦ e = idB;

(2) For every b ∈ B, there are a neighborhood U ⊆ B of b and a neighborhood V ⊆ E of e(b)

such that e(U) ⊆ V , p(V ) ⊆ U and hV : V → U × Bn
1 (0) a homeomorphism satisfying: (i)

p1 ◦ hV = p|V , and (ii) h ◦ e|U = i, where i : B → B × Bn
1 (0), i(b) ≡ (b, 0) and p1 is the

projection over the first coordinate.

Let Y ∗ = Y ⊔∂Y Y be the compact, connected, n-dimensional, boundaryless topological manifold

containing Y , obtained by attaching Y with itself along its boundary. Let p1 be the natural

projection from Y ∗ × Y ∗ to its first factor. Let ∆ = { (y, y) ∈ Y ∗ × Y ∗ }. Let D : Y ∗ → Y ∗ × Y ∗

be the diagonal map, which sends x ∈ Y ∗ to (x, x) ∈ ∆. For each δ > 0, let Bδ(∆) be the the set

of (x, y) ∈ Y ∗ × Y ∗ such that ∥x − y∥ ⩽ δ. Let Bn
1 (0) be the unit ball of Rn. Given open sets V

in Y ∗ × Y ∗ and U in Y we say that a homeomorphism h : V → U × Bn
1 (0) is trivializing for D if

h ◦D(x) = (x, 0). We say h is trivializing for p1 if p1 = q1 ◦ h, where q1 : Y ∗ ×Bn
1 (0) → Y ∗ is the

projection over the first coordinate.

The n-microbundle (Y ∗ × Y ∗, Y ∗, D, p1) is called the tangent microbundle of Y ∗ (see Example

(iii) in Chapter 14 of [9]).

Lemma 3.6. For each δ > 0 there exists a neighborhood Zδ of ∆ in Bδ(∆) such that the restriction

of p1 to Zδ is a fiber bundle (Zδ, Y
∗, Bn

1 (0), p1|Zδ
).

Proof. We start by constructing a microbundle (Oδ, Y
∗, D, p1) where Oδ ⊂ Bδ(∆). Consider the

tangent microbundle of Y ∗. For each x ∈ Y ∗, there exist then an open neighborhood Ux ⊂
Y ∗ of x, an open neighborhood Vx ⊂ Y ∗ × Y ∗ of (x, x) and a trivializing homeomorphism hx :
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Vx → Ux × Bn
1 (0) for both the diagonal map D and the projection p1. By compactness of ∆,

there exist finitely many x1, ..., xk such that
⋃k

i=1 Vxi is a neighborhood of the diagonal ∆. For

each xi, there exists λi > 0, such that h−1
xi

(Uxi × Bn
λi
(0)) ⊂ Bδ(∆). Take λ = mini{λi} and let

Wi ≡ h−1
xi

(Uxi × Bn
λ(0)) ⊂ Bδ(∆). The union Oδ ≡

⋃
iWi is therefore a microbundle such that

Oδ ⊂ Bδ(∆). Applying the Kister-Mazur Theorem (Theorem 2 in [4]), we obtain a neighborhood

Zδ ⊂ Oδ of the diagonal ∆ such that (Zδ, Y
∗, Bn

1 (0), p1|Zδ
) is a fiber bundle. □

We now present the final auxiliary result which will be used in the proof of Theorem 2.1. The

result is known, but we have not found a complete proof of it anywhere, so we include one here for

completeness.

Lemma 3.7. Let (E,B, F, p) be a fiber bundle over a paracompact and contractible space B. Then

(E,B, F, p) is trivial.

Proof. Since B is contractible, let f : B → {∗} and g : {∗} → B be two continuous maps that

are homotopy-inverses of each other. Let (g ◦ f)∗(E) ≡ {(b, e) ∈ B × E | p(e) = (g ◦ f)(b)} be

the pull-back bundle induced by g ◦ f . Then ((g ◦ f)∗(E), B, F, proj1) is a fiber bundle, and it is

immediately checked it is trivial, since g ◦ f is constant. Since g ◦ f is homotopic to idB, from

Theorem 2.1 in [1], it follows that ((g ◦ f)∗(E), B, F, proj1) is isomorphic to (E,B, F, p).1 Hence,

(E,B, F, p) is trivial. □

4. Proof of Theorem 2.1

With preparations complete, we proceed to the proof of Theorem 2.1 per se. Let W ⊂ Y ∗ be

a neighborhood of Y for which there exists a retraction rY : W → Y . There exists δ̃ > 0 such

that δ̃-neighborhood Y (δ̃) around Y in Y ∗ is contained in W and the δ̃-neighborhood X(δ̃) around

X in Y ∗ retracts to X. We denote this retraction also by rX for notational convenience. Define

ℓX : [0, δ̃] → R+ by the maximum of ∥x − rX(x)∥ over all x ∈ Y ∗ such that d(x,X) ⩽ δ. If else,

define ℓY : [0, δ̃] → R+ by the maximum of ∥x − rY (x)∥ over all x ∈ W such that d(x, Y ) ⩽ δ.

Observe that for ∗ ∈ {X,Y }, ℓ∗ is continuous and ℓ∗(0) = 0. For δ > 0, denote by Bδ(C) the

δ-neighborhood around C in Rm.

Let ε0 > 0. By continuity of ℓ∗(·), ∗ ∈ {X,Y }, choose δ̄ > 0 sufficiently small such that

ℓ∗(δ̄) + δ̄ < ε0. Fix δ0 > 0 such that

(0) Graph(f) ∩ (Bδ0(C)× Y ) ⊂ Zδ̄.

Fix any δ ∈ (0, δ0) and choose points x1, . . . , xk in the interior of n-simplices of S with d(xi, C) < δ.

Let r1, . . . , rk be integers such that
∑
ri = c.

1We note that that the proof of Theorem 2.1 in [1] applied above relies on the Covering Homotopy Theorem,
which requires (see [3]) the base space B to be paracompact.
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Apply now the Hopf Approximation Theorem (Theorem 2.5, Appendix C in [10]) to obtain two

subdivisions T0 and S0 of T , with S0 a subdivision of T0, and a simplicial map g : |S0(X)| → |T0|
such that:

(1) ∀x ∈ X, d(f(x), g(x)) < δ̄;

(2) g(X) ⊆ X if f(X) ⊆ X;

(3) Graph(g) ∩ (Bδ(C)× Y ) ⊂ Zδ̄;

(4) g has finitely many fixed points, each of which is contained in the interior of an n-simplex

in S0(X);

(5) The boundary of Bδ(C)∩X in X has no fixed points of g and the index of g over Bδ(C) is

c;

(6) All fixed points of g are contained in Bδ(C).

Let F (g) be the set of fixed points of g in Bδ(C). Consider an open neighborhood V ⊂ X \ ∂X
of F (g) ∪

⋃k
i=1{xi} that is contractible and contained in Bδ(C) ∩ (X \ ∂X). Using the fact that

V is contractible, Lemmas 3.6 and 3.7 imply that the restriction of p1|Zδ̄
to Zδ̄|V ≡ (p1|Zδ̄

)−1(V )

defines the trivial bundle (Zδ̄|V , V, Bn
1 (0), p1). Therefore, letting q1 : V ×Bn

1 (0) → V be the natural

projection on the first factor, there exists a homeomorphism φ : Zδ̄|V → V × Bn
1 (0) such that

p1|Zδ̄|V = q1 ◦ φ. We note that Graph(g|V ) ⊂ Zδ̄|V (from (3) above). The restriction of φ to the

x-section (Zδ̄|V )x = {(x, y) ∈ Zδ̄|V } is a homeomorphism with {x} × Bn
1 (0). Let now (hx)x∈Bn

1 (0)

be a continuous family of homeomorphisms from Bn
1 (0) to itself, such that hx sends x to 0; let

φ2 be the coordinate map of φ mapping to Bn
1 (0). We can now define ψ : Zδ̄|V → V × Bn

1 (0)

by (x, y) 7→ (x, hφ2(x,y) ◦ φ2(x, y)); this is a homeomorphism that sends (y, y) to y × {0}. Letting

Z∗
δ̄
|V ≡ Zδ̄|V − {∆}, it follows that ψ|Z∗

δ̄
|V is a homeomorphism Z∗

δ̄
|V → V × (Bn

1 (0)− {0}).
Let δ1 > 0 be such that the set-distance d(V, ∂X) > δ1 and mini ̸=jd(xi, xj) ⩾ 3δ1. Let δ2 > 0 be

such that for each i = 1, ..., k, any n-simplex τi with barycenter at xi and diameter less than δ2 is

contained in V and is such that τi × τi ⊂ Zδ̄. Consider now a closed connected neighborhood B of

F (g)∪
⋃

i{xi} that is contained in the interior of V . Let d(∂V,B) ⩾ δ3 > 0. Fix η ≡ min{δ1, δ2, δ3}.
Lemma 3.2 now gives a simplicial subdivision T1 of T0 with mesh less than η such that each xi is

the barycenter of an n-simplex τi ∈ T1. Our choice of η implies that the collection of simplices τi

is pairwise disjoint. Let P be the closed star of B with respect to T1. The set P is a orientable,

connected n-pseudomanifold with boundary ∂P (with associated triangulation T1(P )) contained in

V .

For each i, using Lemma 3.1 in each τi, we obtain a n-simplex σi ⊆ τi and a PL map hi : σi → τi

such that xi is the barycenter of both σi and τi, and the only fixed point of hi, with index ri.

Take now a subdivision T2 of T1 that has each σi as an n-simplex of T2 if |ri| = 1. Using Theorem

2.14 in [7], there exist for each i for which |ri| ̸= 1, simplicial subdivisions Ŝ(σi) and T̂ (τi) of σi

and τi, such that hi : |Ŝ(σi)| → |T̂ (τi)| is simplicial. Using Lemma 3.3, there exist subdivisions

Ŝ of T2 and T̂ of T1 that extend Ŝ(σ1) and T̂ (τ1). Since σ2 and τ2 are disjoint from σ1 and τ1,



O’NEILL’S THEOREM FOR PL-APPROXIMATIONS 9

respectively, the same lemma guarantees that σ2 is an n-simplex of Ŝ, and τ2 an n-simplex of T̂ .

This observation applied iteratively together with Lemma 3.3 implies there exists a subdivision Ŝ2

of T2 and T̂2 of T1 such that for each i = 1, ..., k, Ŝ2 extends the triangulation Ŝ(σi) and T̂2 extends

the triangulation T̂ (σi). For notational convenience we drop the subscripts of T̂2 and Ŝ2 and refer

to these triangulations only as T̂ and Ŝ. Note that if |ri| = 1, then we can assume that σi ∈ Ŝn

and τi ∈ T̂n.

Define q : ∂P ∪
⋃

i σi → Y ∗ by q|∂P ≡ g|∂P and for each i = 1, ..., k, q|σi ≡ hi. Let Q =

P \
⋃

xi∈V (σi \ ∂σi). The set Q is a connected, orientable, n-pseudomanifold with boundary ∂Q =

∂P ∪
⋃

xi∈V ∂σi. Define now a map dq : ∂Q→ Bn
1 (0)−{0} by d(x) = q2(ψ(x, q(x))), where q2 is the

projection on the second factor. Clearly, the degree of d is zero. By the Hopf Extension Theorem

(Corollary 18, Chapter 8 in [8]), dq extends to a map over Q, still denoted dq. This defines a map

h : Q→ Y ∗ by letting h(x) = p2(ψ
−1(x, dq(x))), where p2 is the projection on the second factor.

The graph of h is guaranteed to be in Bδ̄(∆) but not in Q × Y , so, from h we now construct

another map whose graph is in Q× Y . Since Graph(h) ⊂ Z∗
δ̄
|V ⊂ Bδ̄(∆), if h(x) ∈ Y ∗ \ Y , then it

follows that h(x) ∈ Y (δ̄); if f(X) ⊂ X, then we have that h(x) ∈ X(δ̄). In the latter case, define

ĥX : Q → Y by ĥ = rX ◦ h; in the former case, let ĥY = rY ◦ h. Therefore we have that for each

x ∈ Q ⊂ V ⊂ X \ ∂X, if f(X) ⊆ X, then ĥX(Q) ⊆ X and ∥x − ĥX(x)∥ ⩽ ℓX(δ̄) + δ̄; if else,

∥x − ĥY (x)∥ ⩽ ℓY (δ̄) + δ̄. In either case, we can extend the map ĥ∗, ∗ ∈ {X,Y } to a map over X

by letting it be equal to g everywhere on X \ P , denoting the extension still by ĥ∗.

For notational convenience, because the proofs in the two cases (f(X) ⊆ X and f(X) ̸⊂ X) are

equal, we will omit the subscripts X and Y from ℓX and ℓY , as well as from ĥX and ĥY , writing

only ℓ and ĥ.

Recall that: (i) P ⊂ V ⊂ Bδ(C) ∩ (X \ ∂X), so, from (0), Graph(f |P ) ⊂ Zδ̄ ⊂ Bδ̄(∆) , which

implies that ∥f |P − idP ∥ ≤ δ̄; (ii) ∥idQ− ĥ|Q∥ ⩽ ℓ(δ̄)+ δ̄; (iii) for each i, since τi×τi ⊂ Zδ̄ ⊂ Bδ̄(∆),

then ∥idσi − ĥ|σi∥ ≤ δ̄. Since P = Q∪
⋃

i σi, (i) - (iii) imply ∥f |P − ĥ|P ∥ ≤ ℓ(δ̄)+ 2δ̄. In X \P , the
map ĥ equals g, and therefore, from (1), ∥f |X\P − ĥ|X\P ∥ ≤ δ̄. Hence, we have ∥f − ĥ∥ ≤ ℓ(δ̄)+2δ̄.

Note now that by construction ĥ has no fixed points in X \
⋃

i(σi \ ∂σi). Since this is a compact

set, let 0 < α < δ̄ be such that ∥x − ĥ(x)∥ > 3α for all x ∈ X \
⋃

i(σi \ ∂σi). By Lemma 3.2, we

can take a subdivision T ∗ of T̂ such that:

(1) The diameter of each simplex is less than α;

(2) for each i, τi is the space of a subcomplex T ∗(τi) of T
∗;

(3) For each i for which |ri| = 1, there is a full-dimensional simplex τ∗i of T ∗ that has xi as its

barycenter.

Recall that, for each i, the map ĥ|σi = hi : σi → τi is simplicial by construction w.r.t. to

triangulations Ŝ(σi) of σi and T̂ (τi) of τi. Since T ∗(τi) is a subdivision of T̂ (τi), by Lemma 2.16

in [7], there exists, for each i, a subdivision S∗(σi) of Ŝ(σi) such that ĥ|σi : |S∗(σi)| → |T ∗| is
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simplicial for each i. When ri = ±1, as ĥ|σi is an affine homeomorphism to τ∗i , the simplex σ∗i
of S∗(σi) that maps to τ∗i has xi as the barycenter for each such i. As before, applying Lemma

3.3 recursively for i = 1, . . . , k, we can extend the triangulation S∗(∪iσi) to a triangulation Ŝ∗ of

X. Using now the Theorem and Addendum in [11], we can consider a sufficiently fine barycentric

subdivision S∗ of Ŝ∗ modulo S∗(∪iσi) and a simplicial map h∗ : |S∗| → |T ∗| such that the restriction

of h∗ to ∪iσi equals ĥ and ∥h∗ − ĥ∥ < 2α. It is easily verified that h∗ has all the stated properties

of the theorem.
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